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ABSTRACT

With increasing work pressure in modern society, prolonged sedentary positions with poor sitting postures can cause physical
and psychological problems, including obesity, muscular disorders, and myopia. In this paper, we present a self-powered sitting
position monitoring vest (SPMV) based on triboelectric nanogenerators (TENGs) to achieve accurate real-time posture
recognition through an integrated machine learning algorithm. The SPMV achieves high sensitivity (0.16 mV/Pa), favorable
stretchability (10%), good stability (12,000 cycles), and machine washability (10 h) by employing knitted double threads
interlaced with conductive fiber and nylon yarn. Utilizing a knitted structure and sensor arrays that are stitched into different parts
of the clothing, the SPMV offers a non-invasive method of recognizing different sitting postures, providing feedback, and warning
users while enhancing long-term wearing comfortability. It achieves a posture recognition accuracy of 96.6% using the random
forest classifier, which is higher than the logistic regression (95.5%) and decision tree (94.3%) classifiers. The TENG-based
SPMV offers a reliable solution in the healthcare system for non-invasive and long-term monitoring, promoting the development

of triboelectric-based wearable electronics.
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1 Introduction

Recently, substantial stress and pressure during work or education
have caused individuals to adopt a sedentary lifestyle. Sitting in a
poor posture for extended periods can cause physical and
psychological problems, such as spine disease, obesity, muscular
disorders, and myopia [1-4]. Therefore, common techniques,
such as vision-based methods using cameras, are applied to
identify the sitting postures of individuals to decrease the risk of
back pain, especially for students and office workers [5,6].
However, the vision-based recognition method has specific
illumination requirements and is unable to continuously record
the postures if the individual goes outside the frame of cameras.
For example, Michael Wolfram developed a visual focus
recognition camera that could be placed on the heads of users [7].
However, considering that this technique does not control the
illumination of the room, the image quality is affected, which in
turn decreases the accuracy. Therefore, a portable and convenient
sensor with an intervention function that reminds users to
maintain the right posture is required to track sitting posture
during a sustained working period.

Owing to the miniaturization and integration of electronics and

wireless sensing networks, wearable electronics are gradually
utilized in health monitoring and human posture recognition to
address the aforementioned drawbacks [8-14]. In particular,
textile-based wearable sensors have recently received special
attention, since they can be woven into clothes for real-time
monitoring of motion and physiological signals [15-17].
Conventional tactile wearable sensors are based on piezoresistive,
piezoelectric, and capacitive devices [18-24]. However, these
sensors have a complex fabrication process and an unpleasant
wearing experience due to the utilization of rigid materials in the
sophisticated ~ micro-electro-mechanical ~ system  process
technology. To ensure stability, most of these sensors utilize rigid
substrates, such as printed circuit boards, that are uncomfortable
for users [25-27]. Although some attempts replacing rigid
electronic components with soft substrates to improve flexibility,
the connection between the soft and rigid materials produces
hotspots and non-linearity under stretching and bending [28-31].
In addition, these sensors are driven by external power sources
that increase energy consumption. To mitigate the
aforementioned shortcomings, researchers seek new materials and
techniques that offer additional compatibility and wearable
sensors with harmonious human-computer interaction for
constant health interventions.
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Fortunately, a new electromechanical conversion technology
invented by Wang's group in 2012, known as triboelectric
nanogenerator (TENG) [32-35], has been considered as self-
powered sensors. The TENG exhibits high electric output in low
frequency, good sensitivity, and microscale motion detection that
can catch weak physiological signals from the human body
[36-40]. Moreover, twisting or bending TENGs may cause
contact-separation between different materials, which can be
converted into electric signals based on the coupling effect of
triboelectrification and electrostatic induction. Therefore, by
integrating TENGs into clothing, the resultant device can
recognize human action by generating corresponding electrical
signals.

For better identification of the sitting posture, a correlation
model should be built between the human posture and electrical
signals. Rapid advancements in machine learning present multiple
opportunities to solve this problem [6,41-45]. Based on iterative
learning and training using large samples, an exact mathematical
mapping function can be built even with vague physical signal
dates, allowing the well-trained model to effectively identify
movement and conduct accurate posture prediction.

In this study, we develop a self-powered sitting position
monitoring vest (SPMV) by collecting energy from individual
motions. The proposed SPMV is manufactured using double weft-
knitted fabric (nylon yarns and conductive fibers), which can
generate electrical signals through contact-separation between
fibers by triboelectrification and electrostatic induction. Due to the
knitted structure design, the SPMV achieves good stretchability,
softness, and comfort. To improve posture recognition accuracy,
sensors are stitched into various parts of the clothing to record
deformation in different parts of the human body and present real-
time signal processing and posture recognition feedback to its
users. Using the random forest classifier, the proposed SPMV
achieves a posture recognition accuracy of 96.6% (higher than
both logistic regression (95.5%) and decision tree (94.3%)
classifiers). Therefore, the proposed TENG-based wearable textile
sensing SPMV offers a reliable solution for adjusting sitting
posture, promoting the application of triboelectric-based wearable
electronics.

2 Experimental sections

2.1 Fabrication of SPMV

The conductive fibers were made of Ag wires that surface was
coated by polytetrafluoroethylene. The nylon yarn and the
conductive fibers were woven into one-to-one cross double-
threaded knitting loops. Thereafter, the sensors were sewed into a
sporty vest that exhibited high stretchability. Finally, a layer of
cotton in the shape of a five-pointed star was placed over the top
to cover and protect the sensors.

2.2 Characterization and measurement

A step motor (LinMot E1100) was applied to provide the periodic
contact-separation movement for TENGs. A programmable
electrometer (Keithley, model 6514) was adopted to test the
voltage, current, and charge. The software platform was
constructed on LabView and Python as they were capable of
realizing real-time data acquisition.

The corresponding signal data were collected and processed by
the machine learning algorithm. First, the data sets were processed
using fast Fourier transform and formed multiple training sets.
Thereafter, these sets were trained using random decision tree to
form a random forest that classified the sitting position through
the voting decisions of multiple decision trees. Finally, the real-
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time changes in the sitting posture of the user were presented in
the screen.

3 Results and discussion

3.1 Fabrication and structure of the SPMV

Although a prolonged sedentary lifestyle is prevalent worldwide,
consistently sitting with incorrect or unhealthy states is more likely
to cause spinal deformity and asymmetry, which increases the risk
of multiple illnesses, such as musculoskeletal, cardiovascular, and
cerebrovascular diseases (strokes). People often sit in various poor
postures in their daily life, such as humpback, hypokinesis, and
upper body leaning toward the right or left, thereby experiencing
musculoskeletal pain, which can arise from the classroom
environment. This “sitting disease” could be alleviated if
individuals could observe their real-time sitting posture by
wearing a specific type of clothing. Figure 1(a) illustrates the
process for real-time monitoring of the sitting posture using the
SPMV. When the user sits in front of the desk wearing the SPMV,
they can watch their sitting posture change on their screen. In a
sitting position, different parts of the human body undergo
different movements and deformations. Therefore, to improve
posture recognition accuracy, multiple SPMVs are positioned on
different parts of the cervical spine, thoracic spine, and lumbar
spine. Figure 1(b) displays the interlock stitch knitted loops
between the nylon yarn and the conductive fiber of the SPMV.
Figure 1(c) demonstrates normal function of the SPMV despite
being stretched, twisted, rolled, and bended. Figure 1(d) shows a
photograph of the user wearing the SPMV (eight sensors).

3.2 Working principle of the SPMV

Figure 2(a) demonstrates the working process of a textile sensor
under finger pressing. Based on the conjunction of
triboelectrification and electrostatic induction, Fig. 2(b) shows the
working mechanism of the SPMV. The SPMV works in a single-
electrode mode wherein its conductive fibers are connected to the
ground by a conductive wire. Due to the stretchable knitted loop
structure, the SPMV can work under two conditions: compression
and stretchability. In the event of applied external force or the user
stretching the SPMV, the two fibers undergo deformation and
establish contact with each other. The analysis of the electricity-
generating process is clearer in the cross-sectional area. When the
conductive fiber and the nylon yarn establish contact, an
electrification process occurs at their interface (Fig. 2(b)(I)),
thereby generating equivalent charges with opposite polarities on
the contact surface of the two fibers. The conductive fiber gains a
negative triboelectric charge since it has a higher ability to capture
negative charges, whereas the nylon yarn gains a positive charge.
Upon separating the two yarns, the electrostatic induction effect
induces a positive charge in the inner conductive fibers
(Fig. 2(b)(II)). As the separation begins, the potential difference
increases, resulting in an instantaneous electron flow from the
conductive yarns to the ground. The electron flow continues until
the two fibers separate completely (Fig. 2(b)(III)). Figure 2(b)(IV)
demonstrates that when the nylon yarn establishes contact with
the conductive fiber again, the electrons flow back from the
ground to the conductive fiber. This continuous contact and
separation movement between the two fibers generates an
alternating current. To acquire the electricity-generating process,
we conduct corresponding simulations of potential distributions
for every component in the contact and separation states using the
COMSOL software. Figure 2(c) demonstrates a small potential
that is generated when the two yarns establish contact. As the two
yarns separate and the corresponding potential increases, the
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Figure1 Fabrication and structure of SPMV. (a) Schematic diagram showing the volunteer wearing the SPMV with various sitting positions. (b) Knitted loop fiber
structure with interlaced double threads. (c) Flexibility of fibers during stretching, twisting, rolling, and bending. (d) Different sensor positions of the SPMV.

nylon yarn surface generates induced charges as a result of the
potential difference (Fig. 2(d)).

3.3 Electrical output and sensing performance

To obtain a quantitative analysis of the electrical output
performance of the proposed SPMV, we utilize a linear motor that
provides a periodic contact-separation motion. Thereafter, the
output of the SPMV is tested at different frequencies to evaluate its
output response properties. A distinct difference is observed in the
voltage and charge. Additionally, the current of the SPMV
increases as the frequency increases from 1-5 Hz (Fig.2(e)).
Figures S1(a)-S1(c) in the Electronic Supplementary Material
(ESM) present the detailed data. If the SPMV connects with
capacitors or batteries, the generated electricity can be stored. This
accumulated and stored charge can be utilized to sustainably
power wearable electronics. To study the ability of the SPMV to
store charge, its charging curve under different capacitors is
plotted. As per the curve, the charging speed decreased as the
capacitance increases (Fig.S1(d) in the ESM). Additionally, we
evaluate the effective output performance of the SPMV by testing
it under different resistances. As the external resistances increase,
the current in SI-TENG decreases, whereas the instantaneous
power density initially increases and then decreases. The
instantaneous power density reaches a maximum of 2.5 mW/m’ at
a load resistance of 440 Q (Fig. S1(e) in the ESM). Figure S1(f) in
the ESM illustrates the corresponding power circuit.

To evaluate its efficiency and ease of usage, we test various
performance parameters of the SPMV, including sensing property,
voltage response, washability, stability, and accuracy of response to
pressure. Figure 2(f) displays the results of evaluating the sensing
property of the SPMV. This figure shows that the voltage
increased as the applied pressure increased from 0-80 kPa. This
higher voltage output is caused by the formation of larger contact
areas due to increased pressure. Furthermore, the response curve

of pressure exhibits two distinct regions. In the low-pressure
region (0-20 kPa), the SPMV exhibits a well-behaved linear
response with a pressure sensitivity of 0.16 mV/Pa; however, in the
high-pressure region (> 20 kPa), the pressure sensitivity is
0.05 mV/Pa. Figure S2 in the ESM presents the output responses
of the charge and current under different pressures.

The flexibility, stretchability, and bending ability affect the
comfort of wearable sensors. Figure 3(a) displays the results of
evaluating the stretchability of SPMV. This figure shows that the
SPMV exhibits good stretchability due to its knitting structure,
and its output increased with increasing strain. Additionally, it
exhibits a favorable response to the curvature and exhibits a higher
voltage as the curvature angles increase (Fig. 3(b)). Washability
also is important for smart textiles. We evaluate its voltage after
washing it in water for 0, 5, and 10 h, respectively. Figure 3(c)
displays the washability of the SPMV, which shows that after
washing the textile for 10 h, the voltage of the curved textile does
not exhibit a noticeable change under different pressures when
compared with the unwashed devices.

A stable and accurate response to pressure is vital for smart
sensors. Figure 3(d) displays the voltage response of SPMV under
different pressures. Further, the voltage response is constant under
a fixed pressure and increased with increasing pressure.
Figure 3(e) shows an enlarged illustration of the single
contact-separation process. Under fixed pressure, the voltage
generated by the sensor remained stable, whereas when the
applied pressure is zero, the voltage is nearly zero. To clarify the
pressure response performance, we further study the relationship
between the voltage output and applied pressure. The voltage
frequency corresponds to the applied force (Fig. S3 in the ESM).
Figure S4 in the ESM displays the corresponding voltage
frequency, charge, and current.

As stability and durability are vital parameters for the wearable
sensor, we further explore the durability and stability of the SPMV
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Figure2 Demonstrating the working principle of SPMV. (a) Effect of applying pressure on the fiber. (b) Schematic illustrations of transferred charges under different
conditions. (c) and (d) Simulation result of the charge distribution of the SPMV under different conditions. (e) Open-circuit voltage (V,,), charge transfer (Q,.), and
short-circuit current () of TENG under the frequency range of 1-5 Hz. (f) V,,.of SPMV under different pressures.

contact-separation cycles under an applied force of 8 N at a
frequency of 1 Hz. There is no identifiable change in the current
after 12,000 cycles (Fig.3(f)). Figure 3(g) shows an enlarged
illustration of the current. Additionally, the bending cycles remain
constant under the frequency of 1 Hz (Fig. 3(h)).

The specifications of the fibers affect the output of the SPMV.
We test different sizes of the yarn to prepare the knitted loops to
obtain the most suitable fiber specifications for the SPMV. The
150D/2 nylon yarn and the 0.30 mm conductive fiber exhibit the
most favorable output under the pressure from 0-80 kPa
(Fig. 3(i)). To clarify the effect of knitting density on the output,
sensors with different loop numbers are attached in the fabricated
area of 2 cm x 2 cm. Figure 3(j) displays the output (voltage,
current, and charge) of the sensors with the loop numbers of 50,
100, and 150, respectively. This figure shows that the loop number
of 100 exhibits the best output, demonstrating the most suitable
density.

Air permeability is a vital parameter for smart textiles. To verify
the air permeability, we compare the SPMV with cotton clothing.
The SPMV exhibits an air permeability of 580 mm/s under the
pressure of 6 Pa, whereas the cotton clothing exhibits an air
permeability of 580 mm/s under the pressure of 750 Pa (Fig. 3(k)).
This result demonstrates that SPMV has superior air permeability
to cotton clothing. What’s more, the water vapor transmission of
the SPMV is 962 g/(m>h), better than cotton cloth (408 g/(m*h)),
shown in Fig. S5 in the ESM.

34 Analyzing signal of the sitting posture

To analyze the movements of the human body in detail, we
position the sensors on different parts of the user’s body,
including the cervical spine, thoracic spine, and lumbar spine

(Fig. 4(a)). Based on the position of the sensors, the user can
monitor posture signals for poor postures, such as humpback, in
real time (Fig. 4(b)). Humpback is one of the most common poor
sitting postures that can result in spinal deformation and
asymmetry. When the user sits in the humpback position or the
idle posture, corresponding signals are produced (Fig. 4(c)). The
sensors, labeled from 1-8, placed on different parts of the body,
exhibit different signals when the user sits forward (Fig. 4(d)).
Sensors 1-4 are positioned on the cervical spine (Fig. 4(l)), end
part of the thoracic spine (Fig. 4(h)), left shoulder wing (Fig. 4(k)),
and right shoulder wing (Fig. 4(g)), respectively. Sensors 5-8 are
positioned on the front of the lumbar spine (Fig. 4(j)), left-side waist
(Fig. 4(f)), right-side waist (Fig. 4(i)), and end part of the lumbar
spine (Fig. 4(e)), respectively. When the wearer sits forward, the
textile sensors in the bilateral shoulder wing, cervical spine, and
thoracic spine bulge stretch, producing distinct signals (Figs. 4(g),
4(k), 4(1), and 4(h)), respectively. Simultaneously, the sensors
positioned on the other parts of the body exhibit a relatively small
signal. We analyze the precise changes in the signal sets of the
eight-sensor arrays in different sitting postures. Figure S6 in the
ESM outlines several poor sitting postures, including user leaning
toward the right, user leaning toward the left, and sitting
backward, which are studied, along with the ideal posture of
stretching and sitting idle.

3.5 Real-time monitoring of sitting postures

Figure 5(a) illustrates the process of real-time monitoring of
various sitting postures by analyzing the user wearing the
proposed SPMV in daily life. When the SPMV generates
electronic signals in the eight sensors, the corresponding signal
data are processed by the machine learning algorithm. First, the
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Figure 3 Electrical and mechanical characterization of SPMV. (a) Output performance of the SPMV under different tensile strains. (b) Output performance of the
SPMV under different curvature angles. (c) V,, of the SPMW under different washing times. (d) V,,. of the SPMW with different applied pressures. (¢) Enlarged image
of the single cycle of the contact-separation under 70 kPa. (f) I of the SPMV under 12,000 loading cycles. (g) Enlarged image of the loading cycles. (h) The voltage
output of the SPMW under 8,000 bending cycles. (i) V,,. under different fibers. (j) V.., Q,, and I, under various numbers of loop units in the same fabric area. (k) Air

permeability of the SPMV and cotton clothing.

data sets are processed using fast Fourier transform and randomly
sampled in columns and rows to form multiple training sets, using
random forest. Thereafter, these sets are trained using random
decision tree to form a random forest that classifies the sitting
position through multiple voting decisions of the decision tree,
thereby allowing random forest to accurately identify and classify
newly obtained data. Finally, we monitor the real-time changes in
the sitting posture of the user in response to the screen feedback.
Using the machine learning algorithm, we continuously
monitor the sitting posture of the user in real time (Fig. 5(b)).
Figure 5(b)(i) displays the records of incorrect posture when the
user is leaning toward the right or sitting idle. As per the figure,
when the user leans toward the right, the virtual character on the
screen leans toward the right as well. Similarly, when the wearer

sits idle, the character mimics their idle position. The enlarged
picture of the screen is displayed toward the right of Fig.5(b)(i).
The details of the real-time monitoring and feedback are displayed
in Movie EMSI. Figure 5(b)(ii) and Movie EMS2 depict the
incorrect posture and corresponding response of the virtual
character leaning toward the left. Stretching oneself can stretch the
muscles and relax the spine, thereby squeezing the chest organs
into the heart and the lung extrusion; this supplies more oxygen to
the tissue and organs (Fig. 5(b)(iii) and Movie EMS3). At the same
time, due to the movement of the upper limbs and body, more
oxygenated blood can be supplied to the brain, thereby resulting in
a feeling of awareness and comfort. Figure 5(b)(iv) and Movie
EM$4 illustrate the poor sitting posture of a humpback that results
in excessive lordosis of the cervical spine and thoracic spine, and
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Figure4 Analysis of signal response to human sitting posture. (a) Schematic illustration of a human spine model. (b) Humpback posture for the user with the SPMV.
(c) Decomposition action of humpback. (d) Eight voltage signals of the different human parts for humpback with sensor arrays. Enlarged images of the corresponding
signals: (e) end part of the lumbar spine, (f) left-side waist, (g) right shoulder wing, (h) end part of the thoracic spine, (i) right-side waist, (j) front of the lumbar spine,

(k) left shoulder wing, and (1) cervical spine.

causes spine pain and other diseases. Leaning backward is a
common incorrect posture as well (Fig. 5(b)(v) and Movie EMS5).
Without a cushion to support the lower waist, learning backward
results in inadequate support to the lumbar spine and waist,
increasing the pressure on the waist and escalating the risk of the
lumbar disc prolapse. When the wearer sits in the idle position,
the character mimicked the idle position on the computer (Fig.
5(c) and Movie EMS6). Based on these observations, since
maintaining a good posture for longer periods is difficult for
individuals, the dynamic virtual character offers an effective
method of reminding users to adjust their sitting posture.

Decision tree, which is a basic algorithm for classification and
regression, divided the dates into similar subsets to build a
complete tree. Random forest, which is an integrated algorithm
based on a decision tree classifier, obtained the final result by
considering multiple independent decision trees. Due to the
inclusive dimensions of characteristic dates, random forest is more
suited for processing the signal dates of sitting postures as
characteristic dates are not single. Additionally, the trained speed
of huge data and their recognition accuracy is comparatively faster
in random forest than the other algorithms due to the

synchronous working of the different decision trees. The model
trained by random forest achieves a high positive predicted value
and a true positive rate for posture recognition (Fig.5(d)). The
recognition accuracy of random forest is 96.6%, which is higher
than both the logistic regression (95.5%) and decision tree
(94.3%).

4 Conclusions

We present a self-powered SPMV based on TENG and machine
learning that can accurately recognize and monitor the sitting
posture positions of individuals. The SPMV exhibits a high
sensitivity of 0.16 mV/Pa, excellent mechanical stretchability, good
air permeability, and a bending and twisting characteristic that is
favorable for the comfort of wearable devices. Additionally, it
produces an accurate electric signal response to different
deformations and movements of the user. By positioning the
sensors on various parts of clothing, the SPMV collects more
information and recognizes precise sitting postures, thereby
achieving non-invasive health monitoring and intervention.
Combined with the machine learning algorithm, the SPMV
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monitors various sitting postures in real time. Using the random
forest classifier, it achieves a posture recognition accuracy of
96.6%, which is higher than the logistic regression (95.5%) and
decision tree (94.3%) Cclassifiers. Thus, we believe that the
proposed TENG-based SPMV offers a reliable healthcare solution
for long-term non-invasive monitoring, thereby widening the
application of triboelectric-based wearable electronics.
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